## Joint-level biomechanics of high-intensity industrial tasks to inform exoskeletons for injury mitigation strategies

Felicia R. Davenport<sup>1\*</sup>, Jennifer Leestma<sup>1,2</sup>, Adriana Staten<sup>3</sup>, Krishan Bhakta<sup>1</sup>, Joshua Fernandez<sup>1,2</sup>, Anirban Mazumdar<sup>1,2</sup>, Aaron J. Young<sup>1,2</sup>, Gregory Sawicki<sup>1,2,4</sup>

<sup>1</sup>George W. Woodruff School of Mechanical Engineering, <sup>2</sup>Institute for Robotics and Intelligent Machines, <sup>3</sup>Wallace H. Coulter Department of Biomedical Engineering, and <sup>4</sup>School of Biological Sciences, Georgia Institute of technology, Atlanta, GA, USA

Email: \*fdavenport6@gatech.edu





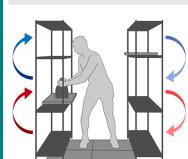


### **Motivation**

Occupational injuries in the lower back and knees are very common

Repetitive Twisting/Bending Asymmetric Lifting

critical joint


Pushing/Pulling

Muscular Fatigue

Need to identify forces to inform exo assistance

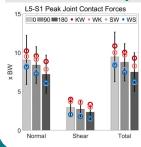
Heightened injury risk

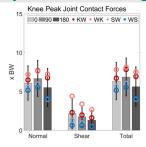
Occupational injuries in 20201 



### **Experimental Setup**

- 9 subjects
- Symmetrical v. asymmetrical lift turns (0°, 90°, 180°)
- 25 lb. weight
- 4 start-end positions (WS, SW, KW, WK) → Right/Left




Data pipeline

Inverse Muscle

## How are joint contact forces influenced by asymmetrical lifting?





- Symmetrical lifts (0°) generate higher joint contact forces.
- Internal joint demands are greater at the L5/S1 joint.

### Remaining Question:

What is contributing to ioint contact forces in asymmetrical lifting?

and vastus lateralis

### **Key Takeaways**

- Symmetrical lifting elicits greater joint contact forces in the knee and the
- Lifting demands are proportionally distributed across knee and back joints.
- Asymmetrical lifting solicits sharing of muscle contributions to joint contact

Do the knee and the back share joint

loading demands?

# Which muscles contribute the most to joint

Muscle Contributions - Flexion/Extension





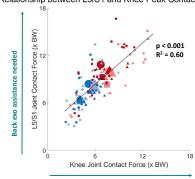













and rectus abdominis Above-Knee: Biceps femoris and semitendinosus lifting WS - SW and rectus abdominis

lifting

KW - WK

Relationship between L5/S1 and Knee Peak Contact Forces



- Knee and L5/S1 joint scale relatively linearly independent of task.
- L5/S1 and knee contact forces are higher in below-waist lifting conditions.

### **Remaining Questions:**

Will a back exo reduce L5/S1 contact forces in above-waist lifting?

How will the prescription of a knee or back exo affect joint contact forces in below-waist lifting?

Knee exo assistance needed

<sup>1</sup>Bureau of Labor Statistics. 2020 Survey of Occupational Injuries and Illnesses. Annual Report. Washington D.C. United States Department of Labor, 2021.

### Acknowledgements

This work is supported by the United States Department of Energy (DOE) and Sandia National Laboratories

## contact forces in lifting?























Rings organized from symmetrical [0°] to asymmetrical [180°] lifting. \* Area of ring or ring size is not indicator of greater contribution.

Muscle involvement across each joint increases with asymmetry likely for joint stabilization.